110 research outputs found

    Synchronization of globally coupled two-state stochastic oscillators with a state dependent refractory period

    Full text link
    We present a model of identical coupled two-state stochastic units each of which in isolation is governed by a fixed refractory period. The nonlinear coupling between units directly affects the refractory period, which now depends on the global state of the system and can therefore itself become time dependent. At weak coupling the array settles into a quiescent stationary state. Increasing coupling strength leads to a saddle node bifurcation, beyond which the quiescent state coexists with a stable limit cycle of nonlinear coherent oscillations. We explicitly determine the critical coupling constant for this transition

    Interference effects in the counting statistics of electron transfers through a double quantum dot

    Get PDF
    We investigate the effect of quantum interferences and Coulomb interaction on the counting statistics of electrons crossing a double quantum dot in a parallel geometry using a generating function technique based on a quantum master equation approach. The skewness and the average residence time of electrons in the dots are shown to be the quantities most sensitive to interferences and Coulomb coupling. The joint probabilities of consecutive electron transfer processes show characteristic temporal oscillations due to interference. The steady-state fluctuation theorem which predicts a universal connection between the number of forward and backward transfer events is shown to hold even in the presence of Coulomb coupling and interference.Comment: 11 pages, 12 figure

    Low-energy Antiproton Interaction with Helium

    Get PDF
    An ab initio potential for the interaction of the neutral helium atom with antiprotons and protons is calculated using the Born-Oppenheimer approximation. Using this potential, the annihilation cross section for antiprotons in the energy range 0.01 microvolt to 1 eV is calculated.Comment: 13 pages, 7 figures, LaTe

    GEO-VISUALISATION AND VISUAL ANALYTICS FOR SMART CITIES: A SURVEY

    Get PDF
    Geo-Visualisation (GV) and Visual Analytics (VA) of geo-spatial data have become a focus of interest for research, industries, government and other organisations for improving the mobility, energy efficiency, waste management and public administration of a smart city. The geo-spatial data requirements, increasing volumes, varying formats and quality standards, present challenges in managing, storing, visualising and analysing the data. A survey covering GV and VA of the geo-spatial data collected from a smart city helps to portray the potential of such techniques, which is still required. Therefore, this survey presents GV and VA techniques for the geo-spatial urban data represented in terms of location, multi-dimensions including time, and several other attributes. Further, the current study provides a comprehensive review of the existing literature related to GV and VA from cities, highlighting the important open white spots for the cities’ geo-spatial data handling in term of visualisation and analytics. This will aid to get a better insight into the urban system and enable sustainable development of the future cities by improving human interaction with the geo-spatial data

    Many-body Green's function approach to attosecond nonlinear X-ray spectroscopy

    Full text link
    Closed expressions are derived for resonant multidimensional X-ray spectroscopy using the quasiparticle nonlinear exciton representation of optical response. This formalism is applied to predict coherent four wave mixing signals which probe single and two core-hole states. Nonlinear X-ray signals are compactly expressed in terms of one- and two- particle Green's functions which can be obtained from the solution of Hedin-like equations at the GWGW level.Comment: 10 pages and 3 figures (To appear in Physical Review B

    Nonlinear optical spectroscopy of single, few, and many molecules; nonequilibrium Green's function QED approach

    Full text link
    Nonlinear optical signals from an assembly of N noninteracting particles consist of an incoherent and a coherent component, whose magnitudes scale \sim N and \sim N(N-1), respectively. A unified microscopic description of both types of signals is developed using a quantum electrodynamical (QED) treatment of the optical fields. Closed nonequilibrium Green's function expressions are derived that incorporate both stimulated and spontaneous processes. General (n+1)-wave mixing experiments are discussed as an example of spontaneously generated signals. When performed on a single particle, such signals cannot be expressed in terms of the nth order polarization, as predicted by the semiclassical theory. Stimulated processes are shown to be purely incoherent in nature. Within the QED framework, heterodyne-detected wave mixing signals are simply viewed as incoherent stimulated emission, whereas homodyne signals are generated by coherent spontaneous emission.Comment: article: 33 pages (preprint format!) ''paper.tex'' figures: 17 figures (.eps) in folder ``figures'

    Multiple Core-Hole Coherence in X-Ray Four-Wave-Mixing Spectroscopies

    Full text link
    Correlation-function expressions are derived for the coherent nonlinear response of molecules to three resonant ultrafast pulses in the x-ray regime. The ability to create two-core-hole states with controlled attosecond timing in four-wave-mixing and pump probe techniques should open up new windows into the response of valence electrons, which are not available from incoherent x-ray Raman and fluorescence techniques. Closed expressions for the necessary four-point correlation functions are derived for the electron-boson model by using the second order cumulant expansion to describe the fluctuating potentials. The information obtained from multidimensional nonlinear techniques could be used to test and refine this model, and establish an anharmonic oscillator picture for electronic excitations

    Quantum master equation for electron transport through quantum dots and single molecules

    Get PDF
    A quantum master equation (QME) is derived for the many-body density matrix of an open current-carrying system weakly coupled to two metal leads. The dynamics and the steady-state properties of the system for arbitrary bias are studied using projection operator techniques, which keep track of number of electrons in the system. We show that coherences between system states with different number of electrons, n, (Fock space coherences) do not contribute to the transport to second order in system-lead coupling. However, coherences between states with the same n may effect transport properties when the damping rate is of the order or faster then the system Bohr frequencies. For large bias, when all the system many-body states lie between the chemical potentials of the two leads, we recover previous results. In the rotating wave approximation (when the damping is slow compared to the Bohr frequencies of the system), the dynamics of populations and the coherences in the system eigenbasis are decoupled. The QME then reduces to a birth and death master equation for populations.Comment: 22 pages, 8 figures, paper accepted in Phys. Rev.
    corecore